
Funability
Doug Durham

Chad Michel

Why did we get into software development?

• Rapid return on our effort

• Work on tough problems

• Build tools that people use

• Enriching our lives

• Building something innovative

• Impacting people’s lives

• Saving money / creating wealth

• Automating complex activities

Problem is…

… the journey many of us are on to seek fulfillment of
those goals has required enduring a lot of “pain” along
the way.

Cool office spaces is not enough

The pain…

• Swim through 5 layers of
inheritance

• 12 hour product releases

• 6 weeks of stabilization

• Estimates <> reality

• Dreading project status reviews

• Hours wading through code to
determine how something works

• Hope and prayers during releases

• Edge of seat waiting for support
calls about system down

• Looking for new projects to avoid
maintaining ugly code

• Test environment cumbersome and
shared

• Estimates driven by deadlines vs
reality

• Silos of design philosophy
throughout the system

• …

What we want…

What we enjoy What we loathe

Reality for most of us…

What we enjoy What we loathe

How can we turn this around?

We have put a lot of emphasis on the ability of our software teams and
development culture to achieve fun and personal fulfillment in our
work…

…helping to realize the things that got us into software while
minimizing the pain…

… we call this Funability
… the measure of how well our culture and process enable us to realize the
motivations that got us into this business in the first place

What contributes to Funability?

• Frequent Delivery of Value to Customers

• Being Part of a Team

• Maintainability of the System

• Effective Management of Technical Debt

• Sound Software Design

• Consistent Quality of Product Releases

• Productivity and Efficiency of the Developers

What contributes to Funability?

• Frequent Delivery of Value to Customers
• Visibility of progress by internal stakeholders

• Regular and frequent releases to external customers

• Minimizing long, drawn-out development efforts

What contributes to Funability?

• Being Part of a Team
• Frequent interactions with teammates on project items

• Ability to leverage pair programming when necessary

• Esprit de Corps - a feeling of pride, fellowship, and common loyalty shared by
the members of a particular group.

• Mutual accountability amongst the team

What contributes to Funability?

• Maintainability of the System
• Ability to efficiently read and understand the code throughout the system

• Ability to effectively debug the system

• Ability to understand the impact of a change on the entire system

• Ability to avoid unintended behavior changes

• Maximizing the useful life of a software system

• Avoidance of silos in the System

What contributes to Funability?

• Effective Management of Technical Debt
• Recognizing when choices will lead to technical debt

• Ability to efficiently reduce technical debt as part of normal feature
development

• Leveraging tools to identify technical debt

What contributes to Funability?

• Consistent Quality of Product Releases
• Stress-free release days

• Automation of processes

• No stabilization phases

• Hot fixes as the exception, not the rule

What contributes to Funability?

• Productivity and Efficiency of the Developers
• Creating a project management discipline that reduces the mental burden on

developers and leads

• Enabling designers and developers enough time to actually do some work

What contributes to Funability?

• Sound Software Design
• Consistency of the conceptual design of the software

• Consistent adherence to common design principles and criteria

• Simplicity over complexity and cleverness

• Disciplined and consistent approach to decomposition and estimation

• This is the “bedrock” of our culture

Can’t a lot of this be managed through
office layout and agile processes?

Cool spaces are important

• Creates a relaxed and collegial
environment

• Enables collaboration

• Helps with recruiting

• Enables play

• Increases socialization

… and Agile methods are essential, but…

… they are not enough to effectively address and manage the ever-
increasing essential complexity of the problems we are trying to solve
with software

Bottom line: Agile is not a silver bullet

Frequent Value
Delivery

Part of a Team Maintainability Managing Technical
Debt

Sound
Software Design

Consistent Release
Quality

Productivity &
Efficiency

“Cool” Space Ease of interaction and
collaboration

A comfortable,
exciting, relaxing
environment

Agile Methods Sprints and Kanban
methods ensure value
prioritization

Daily standups and
mutual accountability

Estimation as part of
the planning process

Reduced scope of
short sprints reduces
release risk

Rituals enable
collaboration and early
issue resolution

Strategies and techniques for
increasing Funability

Key Team Roles

Establish a strong development lead role

• Lead Developer
• Qualities of good programmer +…

• Coaches Jr programmers

• Works with programmers to design
new features

• Lead Engineer
• Qualities of good engineer +…
• Coaches and mentors team on design

principles and standards
• Responsible for maintaining the

conceptual design
• Maintains big picture of product
• Proactive communicator
• Responsible for performance of

product
• Ensures engineers are testing their

code
• Performs code reviews

Establish a strong project management role

• Primary responsibility: Process
facilitator

• Ensure steps are followed
• Maintain consistency
• Keep a productive rhythm
• Schedule/facilitate meetings
• Keep meetings productive
• Ensure proper task prioritization

• Central communication for project

• Tight coordination with lead engineer,
UI/UX, QA and product manager

• Decision tracking and documentation

• Release plan development

• Task/action item tracking

• Project status monitoring / reporting

• Project health monitoring / reporting

• Information/decision coordination

• Retrospectives

• Management of external
communications

• Lead daily standups

• Keeps sprint planning < 1 hour

Protect the schedules of your “makers”

• Manager vs Maker Schedule
• Paul Graham (Y Combinator):

http://www.paulgraham.com/makersschedule.html

http://www.paulgraham.com/makersschedule.html

Establish a consistent design identity

• Avoid treating every new project as a unique design effort
• When done right, the methodology for decomposing a system can (and

should) be the same for every project

• System feels created by a single mind

• Ensures things such as testability remain high in all areas of system

• Enables movement of developers from one area of the system to
another, and from project to project

• Examples: object-orientation, services, micro-services, IDesign

Establish a consistent design identity

“I will contend that Conceptual Integrity is the most important consideration in
system design. It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have one that
contains many good but independent and uncoordinated ideas.”

Fred Brooks (1975)

Design Stamina Hypothesis

http://www.martinfowler.com/bliki/DesignStaminaHypothesis.html

Usually weeks, not
months

Practice test-driven design

• Forces consumption awareness in your code because you create the first
consumer

• Gets you focused on the interface rather than the implementation
• Tends to create interfaces that are conveniently callable

• Forces the software to be more testable which usually requires more
decoupling from its surroundings

• Things that are difficult to test tend to be simplified in order to achieve
testability

• Tests allow you to play “what if” games with broad changes to assess the
impact to the design

• Makes the code more understandable/readable
• Unit tests that describe how the developer intended the code to be consumed
• Built in example code!

Require code review of every pull request

• Code reviews single best way to improve quality

• Reduces the stabilization cycle

• Enables us to develop confidently

• Provides mechanism for coaching and mentoring

• Ensures the code is consistent with the software architecture/design

Use continuous integration with tests

• We want confidence that our systems work

• We don’t want that dreaded support call

• Enables us to sleep at night

• Avoids “broken window” syndrome

Require ability to do integration tests on the
desktop
• Enables a developer to build and run end-to-end tests and validation

on their own machines
• Includes hosting of databases locally

• Avoids collisions with other developers

• Enables development in isolation

• Ability to do this must be a conscious design all along the way
• Your system design choices can enable or prevent this

Frequent Value Delivery Part of a Team Maintainability Managing Technical
Debt

Sound
Software Design

Consistent Release
Quality

Productivity & Efficiency

“Cool” Space Ease of interaction and
collaboration

A comfortable, exciting,
relaxing environment

Agile Methods Sprints and Kanban
methods ensure value
prioritization

Daily standups and mutual
accountability

Reduced scope of short
sprints reduces release risk

Flexible processes
Rituals enable collaboration
and early issue resolution

Strong Lead Engineer Mentoring junior
developers

Ensure code standards met Maintains “big picture”
enabling proactive tradeoff
evaluation and decisions

Maintains conceptual
design integrity

Accountability for product
releases

Maintains focus of the
team and prevents
thrashing

Strong Project
Management

Ensures clear definition of
done and user expectations
Maintains alignment
between product owners
and development team

Maintains backlog list of
items where we need to
come back because of
shortcuts taken

Manages expectations
across all stakeholders
through proactive
communication

Mental burden of planning,
decision, and stakeholder
details lifted from dev team

Maker Schedules Increased availability for
spontaneous collaboration

Less disruptions can mean
increased focus and better
results

Large blocks of time to “get
into” the problem at hand

Consistent Design Identity More efficient estimation
and planning of work

Increased collaboration
efficiency as a result of
reduced design silos

Software designed to
encapsulate volatility
making future changes
easier

Enables explicit decision for
design deviation

Consistent adherence to
common design principles
and criteria helps reduce
entropy/software rot
Consistent approach to
system decomposition

Narrow developer FOV
Increased shared
understanding of the whole
system

Test-Driven Design Helps ensure main branch
has releaseable code

Quality/design
accountability increased
and shared mutually
amongst the team

Code-base is constantly
under some form of test
Reduces unintended
changes in behavior

Helps identify areas of
potential technical debt
Enables refactoring

Enables adherence to best
practices related to design

Defect detection prior to
formal QA testing
Reduces level of stress
during releases

Narrow developer FOV

Pull Request Code Review Helps ensure main branch
has releaseable code

Shared responsibility for
the entire code base and
shared design

Can enable simplicity over
cleverness

Helps identify areas of
potential technical debt

Increased likelihood of
design problems identified
early

Defect detection prior to
formal QA testing

Provides coaching and
mentoring opportunities to
improve skills of the team

Continuous Integration
w/Tests

Provides option for
continuous deployment

Accountability to the team
for consistently successful
builds

Keeps a steady benchmark
of a verified system

Can integrate code quality
static analysis

QA can focus more on
acceptance and regression
testing vs defect detection

Broken builds encourage
attention to detail and
discipline

Desktop integration Tests Increases velocity of
development team

Helps prevent/avoid failed
builds

Encourages modularization
and decoupling of system
and designing for
subsystem isolation and
ability to use mocking
techniques

Defect detection prior to
code review
Easier to set expectations
on developers for code
quality

Increases ease of testing
Reduces need for
stabilization
Reduces friction around
environment setup

Summary

• No silver bullet to creating a dev culture with high Funability

• To truly change your development culture you need to go beyond
cool spaces and agile/scrum and change the way the software is
designed and constructed

• Only an integrated view of these processes and best practices will get you
where you want to be

• Constantly review practices and push for higher Funability

• Challenges remain
• Still feeling a lot of pain in the web client tier and some mobile app

development
• How to actually measure funability in the workplace

Thanks!

“If builders built buildings the way programmers wrote programs, then
the first woodpecker that came along would destroy civilization.”

Gerald Weinberg

• ddurham@dontpaniclabs.com / @dnsdurham

• cmichel@dontpaniclabs.com / @chadmichel

• http://blog.dontpaniclabs.com / @dontpaniclabs

mailto:ddurham@dontpaniclabs.com
mailto:cmichel@dontpaniclabs.com
http://blog.dontpaniclabs.com/

Help us answer the age-old question:

Dog or Cat or Robot?

And enter for a chance to win an

Amazon Fire Stick

How it works:

1. Take the sticker of your choice.

2. Post a photo of it on Twitter and mention us (@dontpaniclabs).

3. Bonus: Follow us on Twitter for an additional entry.

We’ll draw the winner on Monday, May 23 and announce it on Twitter.

